Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Structuring digital spaces by path-partition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We study closure operators on graphs which are induced by path partitions, i.e., certain sets of paths of the same lengths in these graphs. We investigate connectedness with respect to the closure operators studied. In particular, the closure operators are discussed that are induced by path partitions of some natural graphs on the digital spaces Z^n, n > 0 a natural number. For the case n = 2, i.e., for the digital plane Z^2, the induced closure operators are shown to satisfy an analogue of the Jordan curve theorem which allows using them as convenient background structures for studying digital images.
Klíčová slova
Closure operator, path-partition in a graph, digital space.
Autoři
Vydáno
21. 3. 2017
Nakladatel
Springer Verlag
Místo
Berlin
ISBN
978-3-319-54608-7
Kniha
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications
Edice
Lecture Notes in Computer Science
ISSN
0302-9743
Periodikum
Ročník
10149
Číslo
3
Stát
Spolková republika Německo
Strany od
43
Strany do
55
Strany počet
13
URL
https://link.springer.com/chapter/10.1007/978-3-319-54609-4_3
BibTex
@inproceedings{BUT144421, author="Josef {Šlapal}", title="Structuring digital spaces by path-partition", booktitle="Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications", year="2017", series="Lecture Notes in Computer Science", journal="Lecture Notes in Computer Science", volume="10149", number="3", pages="43--55", publisher="Springer Verlag", address="Berlin", doi="10.1007/978-3-319-54609-4\{_}3", isbn="978-3-319-54608-7", issn="0302-9743", url="https://link.springer.com/chapter/10.1007/978-3-319-54609-4_3" }
Dokumenty
Niagara.pdf