Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HANNEMANN, M. TRMAL, J. ONDEL YANG, L. KESIRAJU, S. BURGET, L.
Originální název
Bayesian joint-sequence models for grapheme-to-phoneme conversion
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.
Klíčová slova
Bayesian approach, joint-sequence models, weighted finite state transducers, letter-to-sound, grapheme-tophoneme conversion, hierarchical Pitman-Yor-Process
Autoři
HANNEMANN, M.; TRMAL, J.; ONDEL YANG, L.; KESIRAJU, S.; BURGET, L.
Vydáno
5. 3. 2017
Nakladatel
IEEE Signal Processing Society
Místo
New Orleans
ISBN
978-1-5090-4117-6
Kniha
Proceedings of ICASSP 2017
Strany od
2836
Strany do
2840
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11469/
BibTex
@inproceedings{BUT144449, author="Mirko {Hannemann} and Jan {Trmal} and Lucas Antoine Francois {Ondel} and Santosh {Kesiraju} and Lukáš {Burget}", title="Bayesian joint-sequence models for grapheme-to-phoneme conversion", booktitle="Proceedings of ICASSP 2017", year="2017", pages="2836--2840", publisher="IEEE Signal Processing Society", address="New Orleans", doi="10.1109/ICASSP.2017.7952674", isbn="978-1-5090-4117-6", url="https://www.fit.vut.cz/research/publication/11469/" }