Detail publikace

Bayesian joint-sequence models for grapheme-to-phoneme conversion

HANNEMANN, M. TRMAL, J. ONDEL YANG, L. KESIRAJU, S. BURGET, L.

Originální název

Bayesian joint-sequence models for grapheme-to-phoneme conversion

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We describe a fully Bayesian approach to grapheme-to-phoneme conversion based on the joint-sequence model (JSM). Usually, standard smoothed n-gram language models (LM, e.g. Kneser-Ney) are used with JSMs to model graphone sequences (joint graphemephoneme pairs). However, we take a Bayesian approach using a hierarchical Pitman-Yor-Process LM. This provides an elegant alternative to using smoothing techniques to avoid over-training. No held-out sets and complex parameter tuning is necessary, and several convergence problems encountered in the discounted Expectation- Maximization (as used in the smoothed JSMs) are avoided. Every step is modeled by weighted finite state transducers and implemented with standard operations from the OpenFST toolkit. We evaluate our model on a standard data set (CMUdict), where it gives comparable results to the previously reported smoothed JSMs in terms of phoneme-error rate while requiring a much smaller training/ testing time. Most importantly, our model can be used in a Bayesian framework and for (partly) un-supervised training.

Klíčová slova

Bayesian approach, joint-sequence models, weighted finite state transducers, letter-to-sound, grapheme-tophoneme conversion, hierarchical Pitman-Yor-Process

Autoři

HANNEMANN, M.; TRMAL, J.; ONDEL YANG, L.; KESIRAJU, S.; BURGET, L.

Vydáno

5. 3. 2017

Nakladatel

IEEE Signal Processing Society

Místo

New Orleans

ISBN

978-1-5090-4117-6

Kniha

Proceedings of ICASSP 2017

Strany od

2836

Strany do

2840

Strany počet

5

URL

BibTex

@inproceedings{BUT144449,
  author="Mirko {Hannemann} and Jan {Trmal} and Lucas Antoine Francois {Ondel} and Santosh {Kesiraju} and Lukáš {Burget}",
  title="Bayesian joint-sequence models for grapheme-to-phoneme conversion",
  booktitle="Proceedings of ICASSP 2017",
  year="2017",
  pages="2836--2840",
  publisher="IEEE Signal Processing Society",
  address="New Orleans",
  doi="10.1109/ICASSP.2017.7952674",
  isbn="978-1-5090-4117-6",
  url="https://www.fit.vut.cz/research/publication/11469/"
}

Dokumenty