Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠPAŇHEL, J. SOCHOR, J. JURÁNEK, R. HEROUT, A. MARŠÍK, L. ZEMČÍK, P.
Originální název
Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This work is focused on recognition of license plates in low resolution and low quality images. We present a methodology for collection of real world (non-synthetic) dataset of low quality license plate images with ground truth transcriptions. Our approach to the license plate recognition is based on a Convolutional Neural Network which holistically processes the whole image, avoiding segmentation of the license plate characters. Evaluation results on multiple datasets show that our method significantly outperforms other free and commercial solutions to license plate recognition on the low quality data. To enable further research of low quality license plate recognition, we make the datasets publicly available.
Klíčová slova
holistic license plate recognition, convolutional neural network, low resolution, low quality
Autoři
ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; HEROUT, A.; MARŠÍK, L.; ZEMČÍK, P.
Vydáno
3. 8. 2017
Nakladatel
IEEE Computer Society
Místo
Lecce
ISBN
978-1-5386-2939-0
Kniha
International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017)
Strany od
1
Strany do
6
Strany počet
URL
http://ieeexplore.ieee.org/abstract/document/8078501/
BibTex
@inproceedings{BUT144463, author="Jakub {Špaňhel} and Jakub {Sochor} and Roman {Juránek} and Adam {Herout} and Lukáš {Maršík} and Pavel {Zemčík}", title="Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data", booktitle="International Workshop on Traffic and Street Surveillance for Safety and Security (AVSS 2017)", year="2017", pages="1--6", publisher="IEEE Computer Society", address="Lecce", doi="10.1109/AVSS.2017.8078501", isbn="978-1-5386-2939-0", url="http://ieeexplore.ieee.org/abstract/document/8078501/" }