Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
A ternary relation for structuring the digital plane
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We discuss certain ternary relations, called plain, and show that each of them induces a connectedness on its underlying set. This connectedness allows for definitions of concepts of simple closed and Jordan curves. We introduce a particular plain ternary relation on the digital plane Z^2 and, as the main result, we prove a digital analogue of the Jordan curve theorem for the connectedness induced by this relation. It follows that the ternary relation introduced may be used as a convenient structure on the digital plane for the study of the geometric properties of digital images that are related to boundaries because boundaries of objects in digital images are represented by digital Jordan curves. An advantage of this structure over the Khalimsky topology is that it allows Jordan curves to turn at the acute angle /4 at some points.
Klíčová slova
Ternary relation, connectedness, digital plane, Jordan curve theorem
Autoři
Vydáno
28. 2. 2017
Nakladatel
EDP Sciences
Místo
Les Ulis Cedex A
ISSN
2271-2097
Periodikum
ITM Web of Conferences
Ročník
9
Číslo
01012
Stát
Francouzská republika
Strany od
1
Strany do
5
Strany počet
URL
https://www.fit.vut.cz/research/publication/11594/
Plný text v Digitální knihovně
http://hdl.handle.net/11012/195570
BibTex
@inproceedings{BUT144501, author="Josef {Šlapal}", title="A ternary relation for structuring the digital plane", booktitle="AMCSE 2016", year="2017", journal="ITM Web of Conferences", volume="9", number="01012", pages="1--5", publisher="EDP Sciences", address="Les Ulis Cedex A", doi="10.1051/itmconf/20170901012", issn="2271-2097", url="https://www.fit.vut.cz/research/publication/11594/" }