Detail publikace

A ternary relation for structuring the digital plane

ŠLAPAL, J.

Originální název

A ternary relation for structuring the digital plane

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

We discuss certain ternary relations, called plain, and show that each of them induces a connectedness on its underlying set. This connectedness allows for definitions of concepts of simple closed and Jordan curves. We introduce a particular plain ternary relation on the digital plane Z^2 and, as the main result, we prove a digital analogue of the Jordan curve theorem for the connectedness induced by this relation. It follows that the ternary relation introduced may be used as a convenient structure on the digital plane for the study of the geometric properties of digital images that are related to boundaries because boundaries of objects in digital images are represented by digital Jordan curves. An advantage of this structure over the Khalimsky topology is that it allows Jordan curves to turn at the acute angle /4 at some points.  

Klíčová slova

Ternary relation, connectedness, digital plane, Jordan curve theorem

Autoři

ŠLAPAL, J.

Vydáno

28. 2. 2017

Nakladatel

EDP Sciences

Místo

Les Ulis Cedex A

ISSN

2271-2097

Periodikum

ITM Web of Conferences

Ročník

9

Číslo

01012

Stát

Francouzská republika

Strany od

1

Strany do

5

Strany počet

5

URL

Plný text v Digitální knihovně

BibTex

@inproceedings{BUT144501,
  author="Josef {Šlapal}",
  title="A ternary relation for structuring the digital plane",
  booktitle="AMCSE 2016",
  year="2017",
  journal="ITM Web of Conferences",
  volume="9",
  number="01012",
  pages="1--5",
  publisher="EDP Sciences",
  address="Les Ulis Cedex A",
  doi="10.1051/itmconf/20170901012",
  issn="2271-2097",
  url="https://www.fit.vut.cz/research/publication/11594/"
}