Detail publikace
The leave-one-out maximum likelihood method for the priestley-chao estimator of conditional density
KONEČNÁ, K.
Originální název
The leave-one-out maximum likelihood method for the priestley-chao estimator of conditional density
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The contribution is focused on a kernel estimation of conditional density. Kernel smoothing is still popular non-parametric method, in theory as well as in practice. The Priestley-Chao estimator of conditional density is introduced and the statistical properties of the estimator are given. The smoothing parameters called bandwidths play a significant role in kernel smoothing. This is the reason for suggesting the methods for their estimation. The typical approach - the cross-validation method - is supplemented with the leave-one-out maximum log-likelihood method. The performance of the suggested methods is compared via a simulation study and an application on a real data set.
Klíčová slova
kernel smoothing; conditional density; bandwidths; Priestlez-Chao estimator; leave-one-out maximum likelihood method; cross-validation method
Autoři
KONEČNÁ, K.
Vydáno
6. 2. 2018
Nakladatel
Slovak University of Technology in Bratislava in publishing house SPEKTRUM STU
Místo
Bratislava
ISBN
978-80-227-4765-3
Kniha
Proceedings, 17th Conference on Applied Mathematics – APLIMAT 2018
Edice
First edition
Strany od
577
Strany do
589
Strany počet
13
URL
BibTex
@inproceedings{BUT145510,
author="Kateřina {Pokorová}",
title="The leave-one-out maximum likelihood method for the priestley-chao estimator of conditional density",
booktitle="Proceedings, 17th Conference on Applied Mathematics – APLIMAT 2018",
year="2018",
series="First edition",
pages="577--589",
publisher="Slovak University of Technology in Bratislava in publishing house SPEKTRUM STU",
address="Bratislava",
isbn="978-80-227-4765-3",
url="http://evlm.stuba.sk/APLIMAT2018/proceedings/"
}