Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PLUSKAL, J.
Originální název
Final Report - Machine Learning Outlier Detectionin Safetica's Data Loss Prevention System
Typ
souhrnná výzkumná zpráva - smluv. výzkum
Jazyk
angličtina
Originální abstrakt
Data loss prevention systems are becoming necessities incorporate computer system deployments. Nowadays, when everything is connected, and BYOD (Bring your own device) methodology is tolerated, even encouraged in many companies, network security administrators are obliged to keep with newest technologies to prevent threats to business resources. Threats might be parts of carefully planned corporate espionage, or simple malware encrypting all resources available to it. No matter which threat, data have to be kept safe and each interaction with critical business resources need to be monitored, authorized and logged for future analysis. In this paper, we discuss state of the art methods used for outlier detection, unsupervised learning, and statistical analysis. The final report describes designed technical solution, methods that were implemented and their performance.
Klíčová slova
Machine learning, Outlier detection, Data loss prevention
Autoři
Vydáno
7. 1. 2017
Nakladatel
Safetica Services s.r.o
Místo
Praha
Strany počet
16
URL
https://www.fit.vut.cz/research/publication/11599/
BibTex
@misc{BUT146363, author="Jan {Pluskal}", title="Final Report - Machine Learning Outlier Detectionin Safetica's Data Loss Prevention System", year="2017", pages="16", publisher="Safetica Services s.r.o", address="Praha", url="https://www.fit.vut.cz/research/publication/11599/", note="summary research report - contract. research" }