Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PRIVALOV, V. BERAN, V. SMRŽ, P.
Originální název
Effectiveness of the Bag-of-Words approach on the object search problem in 3D domain
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, we investigate the application of the Bag-of-Words approach for object search task in 3D domain. Image retrieval task solutions, operating on datasets of thousands and millions images, have proved the effectiveness of Bag-of-Words approach. The availability of low cost RGB-D cameras is a rise of large datasets of 3D data similar to image corpuses (e.g. RoboEarth). The results of such an investigation could be useful for many robot scenarios like place recognition from a large dataset of samples of places acquired during the long-term observation of an environment. The first goal of our research presented in this paper is focused on the sensitivity of the Bag-of-Words approach to various parameters (e.g. spacial sampling, surface description etc.) with respect to precision, stability and robustness. The experiments are carry out on two widely-used datasets in object instance identification task in 3D domain.
Klíčová slova
Bag-of-Words, object search, large-scale datasets
Autoři
PRIVALOV, V.; BERAN, V.; SMRŽ, P.
Vydáno
15. 5. 2017
Nakladatel
Association for Computing Machinery
Místo
New York City, NY
ISBN
978-1-4503-5107-2
Kniha
Proceedings of SCCG 2017
Edice
Proceedings - SCCG 2017: 33rd Spring Conference on Computer Graphics
Strany od
138
Strany do
145
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/11640/
BibTex
@inproceedings{BUT146364, author="Vladimir {Privalov} and Vítězslav {Beran} and Pavel {Smrž}", title="Effectiveness of the Bag-of-Words approach on the object search problem in 3D domain", booktitle="Proceedings of SCCG 2017", year="2017", series="Proceedings - SCCG 2017: 33rd Spring Conference on Computer Graphics", pages="138--145", publisher="Association for Computing Machinery", address="New York City, NY", doi="10.1145/3154353.3154365", isbn="978-1-4503-5107-2", url="https://www.fit.vut.cz/research/publication/11640/" }