Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VELEBA, V. PIVOŇKA, P.
Originální název
Adaptive Controller with Identification Based on Neural Network for Systems with Rapid Sampling Rates
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper ability of three identification methods to parameter estimation of the dynamic plant with great ratio of its time constant to sampling periods is compared. We concentrate our attention on dealing with adverse effects that work on real-time identification of process, especially quantization. It is shown, that a neural network applied to on-line identification process produces more stable solution in the rapid sampling domain. Taking advantage of this result, we propose here an adaptive controller with a neural network as on-line estimator. Simple heuristic synthesis based on modified Ziegler-Nichols open loop method (Z-N 1) are discussed, that deals with bad-estimated model of a plant and gives numerically stable parameters of the PID discrete controller.
Klíčová slova v angličtině
Rapid Sampling, Quantization, Neural Network, Training Set, Levenberg-Marquardt Minimization, Discrete PID Controller, RLS Identification Method
Autoři
VELEBA, V.; PIVOŇKA, P.
Rok RIV
2005
Vydáno
15. 6. 2005
Nakladatel
WSEAS
Místo
Lisabon, Portugalsko
ISBN
960-8457-24-6
Kniha
WSEAS International Conferences NN'05, FS'05,EC'05
Strany od
1
Strany do
4
Strany počet
BibTex
@inproceedings{BUT14706, author="Václav {Veleba} and Petr {Pivoňka}", title="Adaptive Controller with Identification Based on Neural Network for Systems with Rapid Sampling Rates", booktitle="WSEAS International Conferences NN'05, FS'05,EC'05", year="2005", pages="4", publisher="WSEAS", address="Lisabon, Portugalsko", isbn="960-8457-24-6" }