Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PAPEŽ, M.
Originální název
Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Jump Markov nonlinear models (JMNMs) characterize a dynamical system by a finite number of presumably nonlinear and possibly non-Gaussian state-space configurations that switch according to a discrete-valued hidden Markov process. In this context, the smoothing problem - the task of estimating fixed points or sequences of hidden variables given all available data -is of key relevance to many objectives of statistical inference, including the estimation of static parameters. The present paper proposes a particle Gibbs with ancestor sampling (PGAS)-based smoother for JMNMs. The design methodology relies on integrating out the discrete process in order to increase the efficiency through Rao-Blackwellization. The experimental evaluation illustrates that the proposed method achieves higher estimation accuracy in less computational time compared to the original PGAS procedure.
Klíčová slova
Sequential Monte Carlo; particle filtering; particle smoothing; particle Markov chain Monte Carlo; particle Gibbs with ancestor sampling; jump Markov nonlinear models; Rao-Blackwellization
Autoři
Vydáno
12. 6. 2018
Nakladatel
Institute of Electrical and Electronics Engineers (IEEE)
ISBN
9783952426999
Kniha
Proceedings of the 16th European Control Conference, ECC 2018
Strany od
2466
Strany do
2471
Strany počet
6
BibTex
@inproceedings{BUT148840, author="Milan {Papež}", title="Rao-Blackwellized particle Gibbs kernels for smoothing in jump Markov nonlinear models", booktitle="Proceedings of the 16th European Control Conference, ECC 2018", year="2018", pages="2466--2471", publisher="Institute of Electrical and Electronics Engineers (IEEE)", doi="10.23919/ECC.2018.8550408", isbn="9783952426999" }