Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PŮŽA, B. NOVOTNÁ, V.
Originální název
On the construction of solutions of general linear boundary value problems for systems of functional differential equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
For the linear boundary value problem x'(t)=p(x)(t)+q(t), l(x)=c_0 on the closed interval I in R, where p: C(I, R^n) to L(I, R^n) is a strongly bounded linear operator, l:C(I, R^n) to R^n is the bounded linear functional, q \in L(I, R^n) and c_0 \in R^n, we describe the method of construction of its solution by the successive approximations by the sequence of the solutions of simplest boundary value problems. We prove the conditions which guarantee convergence of the above mentioned sequences in general and special cases, we prove the stability of the convergence in some sense. Also, for illustration, we solve some typiecal problem in Maple.
Klíčová slova
System of functional differential equations, general boundary value problems, argument deviation, construction of solutions, successive approximations
Autoři
PŮŽA, B.; NOVOTNÁ, V.
Vydáno
13. 2. 2019
Nakladatel
University of Miskolc
Místo
Miskolc
ISSN
1787-2405
Periodikum
Miskolc Mathematical Notes
Ročník
19
Číslo
2
Stát
Maďarsko
Strany od
1063
Strany do
1078
Strany počet
15
BibTex
@article{BUT149370, author="Bedřich {Půža} and Veronika {Novotná}", title="On the construction of solutions of general linear boundary value problems for systems of functional differential equations", journal="Miskolc Mathematical Notes", year="2019", volume="19", number="2", pages="1063--1078", issn="1787-2405" }