Detail publikace

On the construction of solutions of general linear boundary value problems for systems of functional differential equations

PŮŽA, B. NOVOTNÁ, V.

Originální název

On the construction of solutions of general linear boundary value problems for systems of functional differential equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

For the linear boundary value problem x'(t)=p(x)(t)+q(t), l(x)=c_0 on the closed interval I in R, where p: C(I, R^n) to L(I, R^n) is a strongly bounded linear operator, l:C(I, R^n) to R^n is the bounded linear functional, q \in L(I, R^n) and c_0 \in R^n, we describe the method of construction of its solution by the successive approximations by the sequence of the solutions of simplest boundary value problems. We prove the conditions which guarantee convergence of the above mentioned sequences in general and special cases, we prove the stability of the convergence in some sense. Also, for illustration, we solve some typiecal problem in Maple.

Klíčová slova

System of functional differential equations, general boundary value problems, argument deviation, construction of solutions, successive approximations

Autoři

PŮŽA, B.; NOVOTNÁ, V.

Vydáno

13. 2. 2019

Nakladatel

University of Miskolc

Místo

Miskolc

ISSN

1787-2405

Periodikum

Miskolc Mathematical Notes

Ročník

19

Číslo

2

Stát

Maďarsko

Strany od

1063

Strany do

1078

Strany počet

15

BibTex

@article{BUT149370,
  author="Bedřich {Půža} and Veronika {Novotná}",
  title="On the construction of solutions of general linear boundary value problems for systems of functional differential equations",
  journal="Miskolc Mathematical Notes",
  year="2019",
  volume="19",
  number="2",
  pages="1063--1078",
  issn="1787-2405"
}