Detail publikace
Utilization of Machine Learning in Vibrodiagnostics
ZUTH, D. MARADA, T.
Originální název
Utilization of Machine Learning in Vibrodiagnostics
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
The article deals with possibilities of use machine learning in vibrodiagnostics to determine a fault type of the rotary machine. Sample data are simulated according to the expected vibration velocity waveform signal at a specific fault. Then the data are pre-processed and reduced for using Matlab Classification Learner which creates a model for identifying faults in the new data samples. The model is finally tested on a new sample data. The article serves to verify the possibility of this method for later use on a real machine. In this phase is tested data preprocessing and a suitable classification method.
Klíčová slova
Classification learner, Classification method, Machine learning, Matlab, Neuron network, Parallel Misalignment, PCA, Static unbalance, SVN, Vibrodiagnostics
Autoři
ZUTH, D.; MARADA, T.
Vydáno
5. 8. 2018
Nakladatel
Springer Verlag
Místo
Cham
ISBN
978-3-319-97887-1
Kniha
Recent Advances in Soft Computing
ISSN
2194-5357
Periodikum
Advances in Intelligent Systems and Computing
Číslo
2017
Stát
Švýcarská konfederace
Strany od
271
Strany do
278
Strany počet
8
URL
BibTex
@article{BUT149453,
author="Daniel {Zuth} and Tomáš {Marada}",
title="Utilization of Machine Learning in Vibrodiagnostics",
journal="Advances in Intelligent Systems and Computing",
year="2018",
number="2017",
pages="271--278",
doi="10.1007/978-3-319-97888-8\{_}24",
issn="2194-5357",
url="https://link.springer.com/chapter/10.1007%2F978-3-319-97888-8_24"
}