Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PETRŽELA, J.
Originální název
Chaotic oscillator based on mathematical model of multiple-valued memory cell
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper describes development of analog chaotic oscillator based on mathematical model of static multiple-valued memory system. Underlying dynamics is covered by set of three ordinary differential equations without driving force and stochastic processes. Existence of chaos is proved both numerically by calculation of the largest Lyapunov exponent (LLE) and experimentally by real laboratory experiments; these can be considered as evidence of the robustness and structural stability of the observed strange attractors. Even though analyzed dynamical system is topologically conjugated to famous Chua´s oscillator (proved in paper) discovered circuitry can be considered as novel chaotic oscillator.
Klíčová slova
analog oscillator; chaos; linear topological conjugacy; Lyapunov exponents; nonlinear dynamics; static memory; strange attractors
Autoři
Vydáno
11. 9. 2018
Nakladatel
IEEE
Místo
Pilsen, Czech Republic
ISBN
978-80-261-0721-7
Kniha
Proceedings of 23rd International Conference Applied Electronics 2018
Strany od
113
Strany do
116
Strany počet
4
URL
http://www.appel.zcu.cz/
BibTex
@inproceedings{BUT149805, author="Jiří {Petržela}", title="Chaotic oscillator based on mathematical model of multiple-valued memory cell", booktitle="Proceedings of 23rd International Conference Applied Electronics 2018", year="2018", pages="113--116", publisher="IEEE", address="Pilsen, Czech Republic", doi="10.23919/AE.2018.8501458", isbn="978-80-261-0721-7", url="http://www.appel.zcu.cz/" }