Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P.
Originální název
The Karamata integration theorem on time scales and its applications in dynamic and difference equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We derive a time scale version of the well-known result from the theory of regular variation, namely the Karamata integration theorem. We show an application of this theorem in asymptotic analysis of linear second order dynamic equations. We obtain a classification and asymptotic formulae for all (positive) solutions, which unify, extend, and improve the existing results. In addition, we utilize these results, in combination with a transformation between equations on different time scales, to study the critical double-root case in linear difference equations. This leads to solving open problems posed in the literature.
Klíčová slova
Karamata integration theorem; regular variation; time scale; dynamic equation; asymptotic formulae
Autoři
Vydáno
1. 12. 2018
Nakladatel
Elsevier
Místo
USA
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Ročník
338
Číslo
-
Stát
Spojené státy americké
Strany od
487
Strany do
506
Strany počet
20
URL
https://doi.org/10.1016/j.amc.2018.06.023
BibTex
@article{BUT150007, author="Pavel {Řehák}", title="The Karamata integration theorem on time scales and its applications in dynamic and difference equations", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2018", volume="338", number="-", pages="487--506", doi="10.1016/j.amc.2018.06.023", issn="0096-3003", url="https://doi.org/10.1016/j.amc.2018.06.023" }