Detail publikace

Asymptotic Behavior of the Delayed Matrix Exponential Function

SVOBODA, Z. DIBLÍK, J.

Originální název

Asymptotic Behavior of the Delayed Matrix Exponential Function

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper discusses asymptotic behaviors of the delayed matrix exponential, delayed matrix sine and delayed matrix cosine. Such functions were defined in connection with a formalization of the step method for linear systems of differential equations with a constant delay r. The above matrix functions are defined by matrix polynomials on every interval [(k − 1)τ, kτ), where k = 0, 1, . . . and τ > 0. To investigate the asymptotic behavior of the delayed matrix functions, the main branch of the Lambert function is used.

Klíčová slova

asymptotic behavior; delayed matrix exponential; delayed matrix sine; delayed matrix cosine; Lambert function

Autoři

SVOBODA, Z.; DIBLÍK, J.

Vydáno

21. 7. 2018

Nakladatel

American Institute of Physics

Místo

AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA

ISBN

978-0-7354-1690-1

Kniha

INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017)

ISSN

0094-243X

Periodikum

AIP conference proceedings

Stát

Spojené státy americké

Strany od

430006-1

Strany do

430006-4

Strany počet

4

URL