Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DOKOUPIL, J. VÁCLAVEK, P.
Originální název
Adaptive fading Kalman filter design using the geometric mean of normal probability densities
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper extends the Kalman filter to operate with the potential process model uncertainty by relying on the use of a variable fading factor. A loss functional evaluating the prediction step of the Kalman filter is constructed based on Bayesian decision-making. This evaluation results in coupling two normal probability density functions (pdfs), defining a lower and upper bound for a state uncertainty increase. The coupling policy is identical with the geometric mean of pdfs weighted by adaptively adjusted probabilities. In this respect, the fading factor is optimally determined by being treated as a probability assigned to the more conservative pdf. The proposed schema corrects state filtering in the presence of model uncertainty through controlling the Kalman gain matrix in response to observed performance.
Klíčová slova
Kalman filter; fading factor; Kullback-Leibler divergence; Normal distribution
Autoři
DOKOUPIL, J.; VÁCLAVEK, P.
Vydáno
16. 8. 2018
Nakladatel
IEEE
ISBN
978-1-5386-5428-6
Kniha
2018 Annual American Control Conference
Strany od
5037
Strany do
5042
Strany počet
6
URL
https://ieeexplore.ieee.org/document/8431008
BibTex
@inproceedings{BUT150466, author="Jakub {Dokoupil} and Pavel {Václavek}", title="Adaptive fading Kalman filter design using the geometric mean of normal probability densities", booktitle="2018 Annual American Control Conference", year="2018", pages="5037--5042", publisher="IEEE", doi="10.23919/ACC.2018.8431008", isbn="978-1-5386-5428-6", url="https://ieeexplore.ieee.org/document/8431008" }