Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
RAJNOHA, M. BURGET, R. POVODA, L.
Originální název
Image Background Noise Impact on Convolutional Neural Network Training
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Small size dataset is general issue that we may encounter when training neural networks for analysis of image data. There are many cases when networks can not start training even with data augmentation. This paper proposes a new method how to allow training of image classification even when traditional approaches fail. It presents an experiment, which shows that subtraction of redundant background from images can significantly improve convergence of neural network training. Improvement is not in accuracy matter but it means that neural network is able to train and to start convergence. For experimental evaluation, person binary classification was used and compared to experiments, where the background was removed.
Klíčová slova
snr; signal to noise ratio; background; noise; training; impact; cnn; convolutional neural networks; small dataset
Autoři
RAJNOHA, M.; BURGET, R.; POVODA, L.
Vydáno
6. 11. 2018
Místo
Moskva
ISBN
978-1-5386-9361-2
Kniha
2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
Strany od
168
Strany do
171
Strany počet
4
URL
https://ieeexplore.ieee.org/document/8631242
BibTex
@inproceedings{BUT150877, author="Martin {Rajnoha} and Radim {Burget} and Lukáš {Povoda}", title="Image Background Noise Impact on Convolutional Neural Network Training", booktitle="2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)", year="2018", pages="168--171", address="Moskva", doi="10.1109/ICUMT.2018.8631242", isbn="978-1-5386-9361-2", url="https://ieeexplore.ieee.org/document/8631242" }