Detail publikace

Polynomial chaos expansion for surrogate modelling: Theory and software

NOVÁK, L. NOVÁK, D.

Originální název

Polynomial chaos expansion for surrogate modelling: Theory and software

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper is focused on the application of a surrogate model to reliability analysis. Despite recent advances in this field, the reliability analysis of complex non-linear finite element models is still highly time-consuming. Thus, the approximation of the nonlinear finite element model by a surrogate meta-model is often the only choice if one wishes to perform a sufficient amount of simulations to enable reliability analysis. First, the basic theory of polynomial chaos expansion (PCE) is described, including the transformation of correlated random variables. The usage of the PCE for the estimation of statistical moments and sensitivity analysis is then presented. It can be done efficiently via the post-processing of the employed surrogate model in explicit form without any additional computational demands. The possibility of utilizing the adaptive algorithm Least Angle Regression is also discussed. The implementation of the discussed theory into a software tool, and its application, are presented in the last part of the paper.

Klíčová slova

Structural reliability; Polynomial Chaos Expansion; Surrogate model; Software; Sensitivity analysis

Autoři

NOVÁK, L.; NOVÁK, D.

Vydáno

12. 9. 2018

Nakladatel

ERNST & SOHN

Místo

GERMANY

ISSN

0005-9900

Periodikum

Beton und Stahlbeton

Ročník

2

Číslo

113

Stát

Spolková republika Německo

Strany od

27

Strany do

32

Strany počet

6

URL

BibTex

@article{BUT150899,
  author="Lukáš {Novák} and Drahomír {Novák}",
  title="Polynomial chaos expansion for surrogate modelling: Theory and software",
  journal="Beton und Stahlbeton",
  year="2018",
  volume="2",
  number="113",
  pages="27--32",
  doi="10.1002/best.201800048",
  issn="0005-9900",
  url="https://www.scopus.com/record/display.uri?eid=2-s2.0-85053251446&origin=inward&txGid=b08b733a16ab5e7327284b2473671020"
}