Detail publikace

An application of Bell polynomials in numerical solving of nonlinear differential equations

REBENDA, J.

Originální název

An application of Bell polynomials in numerical solving of nonlinear differential equations

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Partial ordinary Bell polynomials are used to formulate and prove a version of the Fa\`{a} di Bruno's formula which is convenient for handling nonlinear terms in the differential transformation. Applicability of the result is shown in two examples of solving the initial value problem for differential equations which are nonlinear with respect to the dependent variable.

Klíčová slova

Faa di Bruno's formula, Bell polynomials, Differential transformation, Nonlinear differential equations

Autoři

REBENDA, J.

Vydáno

5. 6. 2018

Nakladatel

Spektrum STU

Místo

Bratislava

ISBN

978-80-227-4765-3

Kniha

17th CONFERENCE ON APPLIED MATHEMATICS APLIMAT 2018 PROCEEDINGS

Číslo edice

1

Strany od

891

Strany do

900

Strany počet

10

URL

BibTex

@inproceedings{BUT151650,
  author="Josef {Rebenda}",
  title="An application of Bell polynomials in numerical solving of nonlinear differential equations",
  booktitle="17th CONFERENCE ON APPLIED MATHEMATICS APLIMAT 2018 PROCEEDINGS",
  year="2018",
  number="1",
  pages="891--900",
  publisher="Spektrum STU",
  address="Bratislava",
  isbn="978-80-227-4765-3",
  url="http://evlm.stuba.sk/APLIMAT2018/proceedings/Papers/0891_Rebenda.pdf"
}