Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VANŽUROVÁ, A.
Originální název
Examples of Homothety Curvature Homogeneous Spaces
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
First we distinguish between curvature homogeneity and homothety curvature homogeneity. Curvature homogeneous manifolds are Riemannian spaces whose curvature tensor is, in some sense, ``the same" in all points, while for homothety curvature homogeneous spaces, cuvatures (and their covariant derivatives) in two points are related in a more general way. Trivial examples of curvature homogeneous spaces are homogeneous spaces and connected locally homogeneous manifolds. First non-trivial examples were discovered by K. Sekigawa and for a long time, only a few classes of such examples which are not locally homogeneous have been known. We study here an interesting class of metrics, given in arbitrary dimension, which are not locally homogeneous, and which generalize a 3-dimensional example originally given by K. Sekigawa. We also examine examples of ''Sekigawa type'' from the view-point of homothety curvature homogeneity.
Klíčová slova
Riemannian manifold; curvature tensor; curvature homogeneous manifold; locally homogeneous space
Autoři
Vydáno
14. 6. 2018
Místo
University of Defence, Brno
ISBN
978-80-7582-065-5
Kniha
Mathematics, Information Technologies and Applied Sciences 2018, post-conference proceedings of extended versions of selected papers
Strany od
134
Strany do
145
Strany počet
12
BibTex
@inproceedings{BUT151953, author="Alena {Vanžurová}", title="Examples of Homothety Curvature Homogeneous Spaces", booktitle="Mathematics, Information Technologies and Applied Sciences 2018, post-conference proceedings of extended versions of selected papers", year="2018", pages="134--145", address="University of Defence, Brno", isbn="978-80-7582-065-5" }