Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KODYM, O. ŠPANĚL, M. HEROUT, A.
Originální název
Segmentation of Head and Neck Organs at Risk Using CNN with Batch Dice Loss
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with segmentation of organs at risk (OAR) in head and neck area in CT images which is a crucial step for reliable intensity modulated radiotherapy treatment. We introduce a convolution neural network with encoder-decoder architecture and a new loss function, the batch soft Dice loss function, used to train the network. The resulting model produces segmentations of every OAR in the public MICCAI 2015 Head And Neck Auto-Segmentation Challenge dataset. Despite the heavy class imbalance in the data, we improve accuracy of current state-of-the-art methods by 0.33 mm in terms of average surface distance and by 0.11 in terms of Dice overlap coefficient on average.
Klíčová slova
Convolutional Neural Networks, Computed Tomography, Multi-label Segmentation, Head and Neck Radiotherapy
Autoři
KODYM, O.; ŠPANĚL, M.; HEROUT, A.
Vydáno
20. 7. 2018
Nakladatel
Springer International Publishing
Místo
Stuttgart
ISBN
978-3-030-12938-5
Kniha
Pattern Recognition, 40th German Conference, GCPR 2018 Proceedings
Edice
LNCS, volume 11269
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Ročník
2018
Číslo
11269
Stát
Spolková republika Německo
Strany od
105
Strany do
114
Strany počet
9
BibTex
@inproceedings{BUT155013, author="Oldřich {Kodym} and Michal {Španěl} and Adam {Herout}", title="Segmentation of Head and Neck Organs at Risk Using CNN with Batch Dice Loss", booktitle="Pattern Recognition, 40th German Conference, GCPR 2018 Proceedings", year="2018", series="LNCS, volume 11269", journal="Lecture Notes in Computer Science", volume="2018", number="11269", pages="105--114", publisher="Springer International Publishing", address="Stuttgart", doi="10.1007/978-3-030-12939-2\{_}8", isbn="978-3-030-12938-5", issn="0302-9743" }