Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
WIGLASZ, M. SEKANINA, L.
Originální název
Cooperative Coevolutionary Approximation in HOG-based Human Detection Embedded System
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The histogram of oriented gradients (HOG) feature extraction is a computer vision method widely used in embedded systems for detection of objects such as pedestrians. We used cooperative coevolutionary Cartesian genetic programming (CGP) to exploit the error resilience in the HOG algorithm. We evolved new approximate implementations of the arctan and square root functions, which are typically employed to compute the gradient orientations and magnitudes. When the best evolved approximations are integrated into the software implementation of the HOG algorithm, not only the execution time, but also the classification accuracy was improved in comparison with approximations evolved separately using CGP and also compared to the state-of-the art approximate implementations. As the evolved code does not contain any loops and branches, it is suitable for the follow-up low-power hardware implementation.
Klíčová slova
Approximate computing, Cartesian genetic programming, Cooperative coevolution, Histogram of oriented gradients
Autoři
WIGLASZ, M.; SEKANINA, L.
Vydáno
8. 12. 2018
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Bengaluru
ISBN
978-1-5386-9276-9
Kniha
2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)
Strany od
1313
Strany do
1320
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/11695/
BibTex
@inproceedings{BUT155023, author="Michal {Wiglasz} and Lukáš {Sekanina}", title="Cooperative Coevolutionary Approximation in HOG-based Human Detection Embedded System", booktitle="2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)", year="2018", pages="1313--1320", publisher="Institute of Electrical and Electronics Engineers", address="Bengaluru", doi="10.1109/SSCI.2018.8628910", isbn="978-1-5386-9276-9", url="https://www.fit.vut.cz/research/publication/11695/" }