Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ONDEL YANG, L. GODARD, P. BESACIER, L. LARSEN, E. HASEGAWA-JOHNSON, M. SCHARENBORG, O. DUPOUX, E. BURGET, L. YVON, F. KHUDANPUR, S.
Originální název
Bayesian Models for Unit Discovery on a Very Low Resource Language
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Developing speech technologies for low-resource languageshas become a very active research field over the last decade.Among others, Bayesian models have shown some promisingresults on artificial examples but still lack of in situ experiments.Our work applies state-of-the-art Bayesian modelsto unsupervised Acoustic Unit Discovery (AUD) in a reallow-resource language scenario. We also show that Bayesianmodels can naturally integrate information from other resourcefullanguages by means of informative prior leadingto more consistent discovered units. Finally, discoveredacoustic units are used, either as the 1-best sequence or as alattice, to perform word segmentation. Word segmentationresults show that this Bayesian approach clearly outperformsa Segmental-DTW baseline on the same corpus.
Klíčová slova
Acoustic Unit Discovery, Low-ResourceASR, Bayesian Model, Informative Prior.
Autoři
ONDEL YANG, L.; GODARD, P.; BESACIER, L.; LARSEN, E.; HASEGAWA-JOHNSON, M.; SCHARENBORG, O.; DUPOUX, E.; BURGET, L.; YVON, F.; KHUDANPUR, S.
Vydáno
15. 4. 2018
Nakladatel
IEEE Signal Processing Society
Místo
Calgary
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP 2018
Strany od
5939
Strany do
5943
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11719/
BibTex
@inproceedings{BUT155041, author="ONDEL YANG, L. and GODARD, P. and BESACIER, L. and LARSEN, E. and HASEGAWA-JOHNSON, M. and SCHARENBORG, O. and DUPOUX, E. and BURGET, L. and YVON, F. and KHUDANPUR, S.", title="Bayesian Models for Unit Discovery on a Very Low Resource Language", booktitle="Proceedings of ICASSP 2018", year="2018", pages="5939--5943", publisher="IEEE Signal Processing Society", address="Calgary", doi="10.1109/ICASSP.2018.8461545", isbn="978-1-5386-4658-8", url="https://www.fit.vut.cz/research/publication/11719/" }
Dokumenty
1802.06053.pdf