Detail publikace
Analysis of Multilingual BLSTM Acoustic Model on Low and High Resource Languages
KARAFIÁT, M. BASKAR, M. VESELÝ, K. GRÉZL, F. BURGET, L. ČERNOCKÝ, J.
Originální název
Analysis of Multilingual BLSTM Acoustic Model on Low and High Resource Languages
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper provides an analysis of automatic speech recognitionsystems (ASR) based on multilingual BLSTM, where weused multi-task training with separate classification layer foreach language. The focus is on low resource languages, whereonly a limited amount of transcribed speech is available. Insuch scenario, we found it essential to train the ASR systemsin a multilingual fashion and we report superior resultsobtained with pre-trained multilingual BLSTM on this task.The high resource languages are also taken into account andwe show the importance of language richness for multilingualtraining. Next, we present the performance of this techniqueas a function of amount of target language data. The importanceof including context information into BLSTM multilingualsystems is also stressed, and we report increased resilienceof large NNs to overtraining in case of multi-tasktraining.
Klíčová slova
Automatic speech recognition, Multilingualneural networks, Bidirectional Long Short Term Memory
Autoři
KARAFIÁT, M.; BASKAR, M.; VESELÝ, K.; GRÉZL, F.; BURGET, L.; ČERNOCKÝ, J.
Vydáno
15. 4. 2018
Nakladatel
IEEE Signal Processing Society
Místo
Calgary
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP 2018
Strany od
5789
Strany do
5793
Strany počet
5
URL
BibTex
@inproceedings{BUT155042,
author="Martin {Karafiát} and Murali Karthick {Baskar} and Karel {Veselý} and František {Grézl} and Lukáš {Burget} and Jan {Černocký}",
title="Analysis of Multilingual BLSTM Acoustic Model on Low and High Resource Languages",
booktitle="Proceedings of ICASSP 2018",
year="2018",
pages="5789--5793",
publisher="IEEE Signal Processing Society",
address="Calgary",
doi="10.1109/ICASSP.2018.8462083",
isbn="978-1-5386-4658-8",
url="https://www.fit.vut.cz/research/publication/11720/"
}
Dokumenty