Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LOZANO DÍEZ, A. PLCHOT, O. MATĚJKA, P. NOVOTNÝ, O. GONZALEZ-RODRIGUEZ, J.
Originální název
Analysis of DNN-based Embeddings for Language Recognition on the NIST LRE 2017
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, we analyze different designs of a language identification (LID) system based on embeddings. In our case, an embedding represents a whole utterance (or a speech segment of variable duration) as a fixed-length vector (similar to the ivector). Moreover, this embedding aims to capture information relevant to the target task (LID), and it is obtained by training a deep neural network (DNN) to classify languages. In particular, we trained a DNN based on bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) layers, whose frame-by-frame outputs are summarized into mean and standard deviation statistics for each utterance. After this pooling layer, we add two fully connected layers whose outputs are used as embeddings, which are afterwards modeled by a Gaussian linear classifier (GLC). For training, we add a softmax output layer and train the whole network with multi-class cross-entropy objective to discriminate between languages. We analyze the effect of using data augmentation in the DNN training, as well as different input features and architecture hyper-parameters, obtaining configurations that gradually improved the performance of the embedding system. We report our results on the NIST LRE 2017 evaluation dataset and compare the performance of embeddings with a reference i-vector system. We show that the best configuration of our embedding system outperforms the strong reference i-vector system by 3% relative, and this is further pushed up to 10% relative improvement via a simple score level fusion.
Klíčová slova
language recognition
Autoři
LOZANO DÍEZ, A.; PLCHOT, O.; MATĚJKA, P.; NOVOTNÝ, O.; GONZALEZ-RODRIGUEZ, J.
Vydáno
26. 6. 2018
Nakladatel
International Speech Communication Association
Místo
Les Sables d'Olonne
ISSN
2312-2846
Periodikum
Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland
Ročník
2018
Číslo
6
Stát
Finská republika
Strany od
39
Strany do
46
Strany počet
8
URL
https://www.isca-speech.org/archive/Odyssey_2018/pdfs/42.pdf
BibTex
@inproceedings{BUT155066, author="Alicia {Lozano Díez} and Oldřich {Plchot} and Pavel {Matějka} and Ondřej {Novotný} and Joaquin {Gonzalez-Rodriguez}", title="Analysis of DNN-based Embeddings for Language Recognition on the NIST LRE 2017", booktitle="Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop", year="2018", journal="Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland", volume="2018", number="6", pages="39--46", publisher="International Speech Communication Association", address="Les Sables d'Olonne", doi="10.21437/Odyssey.2018-6", issn="2312-2846", url="https://www.isca-speech.org/archive/Odyssey_2018/pdfs/42.pdf" }
Dokumenty
lozano_odyssey2018_42.pdf