Detail publikace

Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model

BRUMMER, J. SILNOVA, A. BURGET, L. STAFYLAKIS, T.

Originální název

Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Embeddings in machine learning are low-dimensional representationsof complex input patterns, with the property that simplegeometric operations like Euclidean distances and dot productscan be used for classification and comparison tasks. Weintroduce meta-embeddings, which live in more general innerproduct spaces and which are designed to better propagate uncertaintythrough the embedding bottleneck. Traditional embeddingsare trained to maximize between-class and minimizewithin-class distances. Meta-embeddings are trained to maximizerelevant information throughput. As a proof of conceptin speaker recognition, we derive an extractor from the familiargenerative Gaussian PLDA model (GPLDA). We show thatGPLDA likelihood ratio scores are given by Hilbert space innerproducts between Gaussian likelihood functions, which weterm Gaussian meta-embeddings (GMEs). Meta-embedding extractorscan be generatively or discriminatively trained. GMEsextracted by GPLDA have fixed precisions and do not propagateuncertainty. We show that a generalization to heavy-tailedPLDA gives GMEs with variable precisions, which do propagateuncertainty. Experiments on NIST SRE 2010 and 2016show that the proposed method applied to i-vectors withoutlength normalization is up to 20% more accurate than GPLDAapplied to length-normalized i-vectors.

Klíčová slova

embeddings, machine learning, speaker recognition

Autoři

BRUMMER, J.; SILNOVA, A.; BURGET, L.; STAFYLAKIS, T.

Vydáno

26. 6. 2018

Nakladatel

International Speech Communication Association

Místo

Les Sables d'Olonne

ISSN

2312-2846

Periodikum

Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland

Ročník

2018

Číslo

6

Stát

Finská republika

Strany od

349

Strany do

356

Strany počet

8

URL

BibTex

@inproceedings{BUT155077,
  author="Johan Nikolaas Langenhoven {Brummer} and Anna {Silnova} and Lukáš {Burget} and Themos {Stafylakis}",
  title="Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model",
  booktitle="Proceedings of Odyssey 2018",
  year="2018",
  journal="Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland",
  volume="2018",
  number="6",
  pages="349--356",
  publisher="International Speech Communication Association",
  address="Les Sables d'Olonne",
  doi="10.21437/Odyssey.2018-49",
  issn="2312-2846",
  url="https://www.fit.vut.cz/research/publication/11790/"
}

Dokumenty