Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠPAŇHEL, J. SOCHOR, J. MAKAROV, A.
Originální název
Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we explore the implementation of vehicle and pedestrian detection based on neural networks in a real-world application. We suggest changes to the previously published method with respect to capabilities of low-powered devices, such as Nvidia Jetson platform. Our experimental evaluation shows that detectors are capable of running 10.7 FPS on Jetson TX2 and can be used in real-world applications.
Klíčová slova
camera calibration, convolutional neural networks, pedestrian detection, traffic violation, vehicle detection
Autoři
ŠPAŇHEL, J.; SOCHOR, J.; MAKAROV, A.
Vydáno
29. 10. 2018
Nakladatel
IEEE Signal Processing Society
Místo
Belgrade
ISBN
978-1-5386-6974-7
Kniha
2018 14th Symposium on Neural Networks and Applications (NEUREL)
Strany od
1
Strany do
6
Strany počet
BibTex
@inproceedings{BUT155106, author="ŠPAŇHEL, J. and SOCHOR, J. and MAKAROV, A.", title="Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks", booktitle="2018 14th Symposium on Neural Networks and Applications (NEUREL)", year="2018", pages="1--6", publisher="IEEE Signal Processing Society", address="Belgrade", doi="10.1109/NEUREL.2018.8586996", isbn="978-1-5386-6974-7" }