Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FRIÁK, M. KROUPA, P. HOLEC, D. ŠOB, M.
Originální název
An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio A Z = 2 C 44 / ( C 11 − C 12 ) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young’s modulus (so-called soft directions) change from h 100 i (in the zero-pressure state) to the h 111 i directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor A Z = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).
Klíčová slova
YN; ScN; pressure; elasticity; ab initio; stability; nanocomposites
Autoři
FRIÁK, M.; KROUPA, P.; HOLEC, D.; ŠOB, M.
Vydáno
1. 12. 2018
Nakladatel
MDPI
Místo
Basel, Switzerland
ISSN
2079-4991
Periodikum
Nanomaterials
Ročník
8
Číslo
12
Stát
Švýcarská konfederace
Strany od
1
Strany do
14
Strany počet
URL
https://www.mdpi.com/2079-4991/8/12/1049
Plný text v Digitální knihovně
http://hdl.handle.net/11012/189001
BibTex
@article{BUT155623, author="Martin {Friák} and Pavel {Kroupa} and David {Holec} and Mojmír {Šob}", title="An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides", journal="Nanomaterials", year="2018", volume="8", number="12", pages="1--14", doi="10.3390/nano8121049", issn="2079-4991", url="https://www.mdpi.com/2079-4991/8/12/1049" }