Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Structuring digital plane by the 8-adjacency graph with a set of walks
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In the digital plane Z^2, we define connectedness induced by a set of walks of the same lengths in the 8-adjacency graph. The connectedness is shown to satisfy a digital analogue of the Jordan curve theorem. This proves that the 8-adjacency graph with a set of walks of the same lengths provides a convenient structure on the digital plane Z^2 for the study of digital images.
Klíčová slova
Digital plane, 8-adjacency graph, walk, connectedness, Jordan curve theorem
Autoři
Vydáno
16. 11. 2017
Nakladatel
International Assocoation for Research and Science
Místo
USA
ISSN
2367-895X
Periodikum
International Journal of Mathematical and Computational Methods
Ročník
2017
Číslo
2
Stát
Spojené státy americké
Strany od
150
Strany do
154
Strany počet
5
URL
https://www.iaras.org/iaras/home/caijmcm/structuring-digital-plane-by-the-8-adjacency-graph-with-a-set-of-walks
BibTex
@article{BUT155735, author="Josef {Šlapal}", title="Structuring digital plane by the 8-adjacency graph with a set of walks", journal="International Journal of Mathematical and Computational Methods", year="2017", volume="2017", number="2", pages="150--154", issn="2367-895X", url="https://www.iaras.org/iaras/home/caijmcm/structuring-digital-plane-by-the-8-adjacency-graph-with-a-set-of-walks" }