Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČERMÁK, J. JÁNSKÝ, J. NECHVÁTAL, L.
Originální název
Exact versus discretized stability regions for a linear delay differential equation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper introduces a system of necessary and sufficient stability conditions for a four- term linear delay difference equation with complex coefficients. These conditions are de- rived explicitly with respect to the time lag and can be viewed as a direct discrete coun- terpart to the existing stability results for the underlying delay differential equation. As a main proof tool, the boundary locus technique combined with some special results of the polynomial theory is employed. Since the studied difference equation serves as a θ - method discretization of its continuous pattern, several problems of numerical stability are discussed as well.
Klíčová slova
Linear delay difference equation; Linear delay differential equation; θ -method discretization; Exact and numerical stability
Autoři
ČERMÁK, J.; JÁNSKÝ, J.; NECHVÁTAL, L.
Vydáno
15. 4. 2019
Nakladatel
Elsevier Science Inc.
Místo
New York, USA
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Ročník
347
Číslo
1
Stát
Spojené státy americké
Strany od
712
Strany do
722
Strany počet
11
URL
https://www.sciencedirect.com/science/article/pii/S0096300318310002
BibTex
@article{BUT155747, author="Jan {Čermák} and Jiří {Jánský} and Luděk {Nechvátal}", title="Exact versus discretized stability regions for a linear delay differential equation", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2019", volume="347", number="1", pages="712--722", doi="10.1016/j.amc.2018.11.026", issn="0096-3003", url="https://www.sciencedirect.com/science/article/pii/S0096300318310002" }