Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NEČASOVÁ, G. KUNOVSKÝ, J. ŠÁTEK, V.
Originální název
Numerical Solution of Wave Equation Using Higher Order Methods
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with the numerical solution of partial differential equations (PDEs). The one-dimensional wave equation was chosen for experiments; it is solved using Method of Lines (MOL) which transforms the PDE into the system of ordinary differential equations (ODEs). The time domain remains continuous, and the Modern Taylor Series Method (MTSM) is used for solving the system of ODES. On the other hand, the space domain is discretized by higher order finite difference formulas. Higher order difference formulas can be unstable. The necessity of the variable precision arithmetic is discussed in this paper. The seven point difference formula is analysed as an example of higher order difference formulas.
Klíčová slova
PDE, ODE, Method of Lines, MTSM, difference formulas
Autoři
NEČASOVÁ, G.; KUNOVSKÝ, J.; ŠÁTEK, V.
Vydáno
25. 9. 2017
Nakladatel
American Institute of Physics
Místo
Thessaloniki
ISBN
978-0-7354-1690-1
Kniha
15th International Conference of Numerical Analysis and Applied Mathematics
Strany od
1
Strany do
4
Strany počet
URL
https://aip.scitation.org/doi/10.1063/1.5043964
BibTex
@inproceedings{BUT155785, author="Gabriela {Nečasová} and Jiří {Kunovský} and Václav {Šátek}", title="Numerical Solution of Wave Equation Using Higher Order Methods", booktitle="15th International Conference of Numerical Analysis and Applied Mathematics", year="2017", pages="1--4", publisher="American Institute of Physics", address="Thessaloniki", doi="10.1063/1.5043964", isbn="978-0-7354-1690-1", url="https://aip.scitation.org/doi/10.1063/1.5043964" }