Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KALA, Z. LEHKÝ, D. NOVÁK, D.
Originální název
Utilization of artificial neural networks for global sensitivity analysis of model output
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with the application of artificial neural networks to sensitivity measurement of the output quantity to the variability of input quantities. The original nonlinear FEM model calculates ultimate load-bearing capacity of a T-shaped prestressed concrete roof girder. Latin hypercube sampling algorithm is used to generate samples of input variables. The global Sobol sensitivity analysis is proposed to understand the effect of the input variability on the quantity of interest. The outputs of the Sobol sensitivity analysis are verified by subsequent two sensitivity analyses. The first studies show that artificial neural networks are very promising for effective evaluation of global sensitivity analysis. Artificial neural networks do not eliminate mutual interaction among input quantities; it is a very important piece of knowledge connected with maintaining the satisfactory accurateness of the reliability computation.
Klíčová slova
artificial neural networks, Sobol, global sensitivity analysis, interactions, reliability
Autoři
KALA, Z.; LEHKÝ, D.; NOVÁK, D.
Vydáno
24. 7. 2019
Nakladatel
American Institute of Physics Inc.
Místo
MELVILLE, USA
ISBN
978-0-7354-1854-7
Kniha
AIP Conference Proceedings
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
2116
Stát
Spojené státy americké
Strany od
120005-1
Strany do
120005-4
Strany počet
4
URL
https://aip.scitation.org/doi/abs/10.1063/1.5114107