Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SLOWIK, O. LEHKÝ, D. NOVÁK, D.
Originální název
Reliability-based design optimization using artificial neural network inverse analysis
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
An efficient approach to reliability-based design optimization is presented. It is aimed for solving inverse reliability problems with multiple solutions of optimal design parameters with respect to the target reliability constraints. The main goal is to propose procedure which can employ artificial neural network surrogate model in order to obtain set of design parameters securing defined level of reliability. Objective function can be defined as simple function of dependent and independent variables, e.g. cost of the structure calculated based on the volume and type of materials used.
Klíčová slova
Reliability-based, optimization, neural network, inverse analysis
Autoři
SLOWIK, O.; LEHKÝ, D.; NOVÁK, D.
Vydáno
12. 9. 2018
ISSN
1437-1006
Periodikum
Beton- und Stahlbetonbau
Ročník
113
Číslo
S2
Stát
Spolková republika Německo
Strany od
1
Strany do
6
Strany počet
URL
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbest.201800059&file=best201800059-sup-0001-suppinfo.pdf
BibTex
@inproceedings{BUT156407, author="Ondřej {Slowik} and David {Lehký} and Drahomír {Novák}", title="Reliability-based design optimization using artificial neural network inverse analysis", booktitle="16th International Probabilistic Workshop", year="2018", journal="Beton- und Stahlbetonbau", volume="113", number="S2", pages="1--6", issn="1437-1006", url="https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbest.201800059&file=best201800059-sup-0001-suppinfo.pdf" }