Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HESKO, B.
Originální název
Deep convolutional networks for OCT image classification
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, OCT (optical coherence tomography) images are classified according to the present pathology into four distinct categories. Three different neural network models are used to classify images, each model is recent and we are achieving exceptional results on the testing dataset, which was unknown to the network during the training. Accuracy on the testing set is higher than 98% and only a few of images are classified into the wrong category. This makes our approach perspective for future automatic use. To further improve results, all three models are using transfer learning.
Klíčová slova
OCT, deep learning, classification, retina
Autoři
Vydáno
25. 4. 2019
Nakladatel
Vysoké učení technické vBrně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5735-5
Kniha
Proceedings of the 25th Conference STUDENT EEICT 2019
Strany od
437
Strany do
442
Strany počet
5
BibTex
@inproceedings{BUT156730, author="Branislav {Hesko}", title="Deep convolutional networks for OCT image classification", booktitle="Proceedings of the 25th Conference STUDENT EEICT 2019", year="2019", pages="437--442", publisher="Vysoké učení technické vBrně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5735-5" }