Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MATULA, J.
Originální název
SEGMENTATION OF CARTILAGE TISSUE IN MICRO CT IMAGES OF MOUSE EMBRYOS WITH MODIFIED U-NET CONVOLUTIONAL NEURAL NETWORK
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Manual segmentation of cartilage tissue in micro CT images of mouse embryos is a very time-consuming process and significantly increases the time required for the research of mammal facial structure development. It is possible to solve this problem by using a fully-automatic segmentation algorithm. In this paper, a fully-automatic segmentation method is proposed using a convolutional neural network trained on manually segmented data. The architecture of the proposed convolutional network is based on the U-Net architecture with its encoding part substituted for the encoding part of the VGG16 classification convolutional neural network pre-trained on the ImageNet database of labelled images. The proposed network achieves average Dice coefficient 0.88 in comparison to manually segmented images.
Klíčová slova
segmentation; cartilage; convolutional neural networks; deep learning
Autoři
Vydáno
25. 4. 2019
Nakladatel
Brno University of Technology
Místo
Brno
ISBN
978-80-214-5735-5
Kniha
Proceedings of the 25th Conference STUDENT EEICT 2019
Číslo edice
první
Strany od
191
Strany do
194
Strany počet
4
URL
http://www.feec.vutbr.cz/conf/EEICT/archiv/sborniky/EEICT_2019_sbornik.pdf
BibTex
@inproceedings{BUT156825, author="Jan {Matula}", title="SEGMENTATION OF CARTILAGE TISSUE IN MICRO CT IMAGES OF MOUSE EMBRYOS WITH MODIFIED U-NET CONVOLUTIONAL NEURAL NETWORK", booktitle="Proceedings of the 25th Conference STUDENT EEICT 2019", year="2019", number="první", pages="191--194", publisher="Brno University of Technology", address="Brno", isbn="978-80-214-5735-5", url="http://www.feec.vutbr.cz/conf/EEICT/archiv/sborniky/EEICT_2019_sbornik.pdf" }