Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VEĽAS, M. ŠPANĚL, M. HRADIŠ, M. HEROUT, A.
Originální název
CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a novel method for ground segmentation in Velodyne point clouds. We propose an encoding of sparse 3D data from the Velodyne sensor suitable for training a convolutional neural network (CNN). This general purpose approach is used for segmentation of the sparse point cloud into ground and non-ground points. The LiDAR data are represented as a multi-channel 2D signal where the horizontal axis corresponds to the rotation angle and the vertical axis represents channels - laser beams. Multiple topologies of relatively shallow CNNs (i.e. 3-5 convolutional layers) are trained and evaluated, using a manually annotated dataset we prepared. The results show significant improvement of performance over the state-of-the-art method by Zhang et al. in terms of speed and also minor improvements in terms of accuracy.
Klíčová slova
convolutional neural networks, ground segmentation, Velodyne, LiDAR
Autoři
VEĽAS, M.; ŠPANĚL, M.; HRADIŠ, M.; HEROUT, A.
Vydáno
27. 4. 2018
Nakladatel
Institute of Electrical and Electronics Engineers
Místo
Torres Vedras
ISBN
978-1-5386-5221-3
Kniha
IEEE International Conference on Autonomous Robot Systems and Competitions
Strany od
97
Strany do
103
Strany počet
7
URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374167
BibTex
@inproceedings{BUT157178, author="Martin {Veľas} and Michal {Španěl} and Michal {Hradiš} and Adam {Herout}", title="CNN for Very Fast Ground Segmentation in Velodyne LiDAR Data", booktitle="IEEE International Conference on Autonomous Robot Systems and Competitions", year="2018", pages="97--103", publisher="Institute of Electrical and Electronics Engineers", address="Torres Vedras", doi="10.1109/ICARSC.2018.8374167", isbn="978-1-5386-5221-3", url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8374167" }