Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KUREŠ, M.
Originální název
On elliptic curves with a closed component passing through a hexagon
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In general, there exists an ellipse passing through the vertices of a convex pentagon, but there is no ellipse passing through the vertices of a convex hexagon. Thus, attention is turned to algebraic curves of the third degree, namely to the closed component of certain elliptic curves. This closed curve will be called the spekboom curve. Results of numerical experiments and some hypotheses regarding hexagons of special shape connected with the existence of this curve passing through the vertices are presented and suggested. Some properties of the spekboom curve are described, too.
Klíčová slova
algebraic closed curves, elliptic curve, hexagon
Autoři
Vydáno
1. 6. 2019
Nakladatel
Ovidius University
Místo
Constanta
ISSN
1224-1784
Periodikum
Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica
Ročník
27
Číslo
2
Stát
Rumunsko
Strany od
67
Strany do
82
Strany počet
16
URL
http://www.anstuocmath.ro/mathematics/anale2019vol2/03_Kures.pdf
Plný text v Digitální knihovně
http://hdl.handle.net/11012/178355
BibTex
@article{BUT157202, author="Miroslav {Kureš}", title="On elliptic curves with a closed component passing through a hexagon", journal="Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica", year="2019", volume="27", number="2", pages="67--82", doi="10.2478/auom-2019-0019", issn="1224-1784", url="http://www.anstuocmath.ro/mathematics/anale2019vol2/03_Kures.pdf" }