Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHEREVKO, Y. BEREZOVSKI, V. HINTERLEITNER, I. SMETANOVÁ, D.
Originální název
Infinitesimal Transformations of Locally Conformal Kähler Manifolds
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of a Lee form. We have also obtained the system of partial differential equations for the transformations, and explored its integrability conditions. Hence we have got the necessary and sufficient conditions in order that the an LCK-manifold admits a group of conformal motions. We have also calculated the number of parameters which the group depends on. We have proved that a group of conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by corresponding Kählerian metric. We also established that an isometric group of an LCK-manifold is isomorphic to some subgroup of the homothetic group of the coresponding local Kählerian metric.
Klíčová slova
Hermitian manifold; locally conformal Kähler manifold; Lee form; diffeomorphism; conformal transformation; Lie derivative
Autoři
CHEREVKO, Y.; BEREZOVSKI, V.; HINTERLEITNER, I.; SMETANOVÁ, D.
Vydáno
24. 7. 2019
Nakladatel
MDPI
ISSN
2227-7390
Periodikum
Mathematics
Ročník
8
Číslo
7
Stát
Švýcarská konfederace
Strany od
1
Strany do
16
Strany počet
URL
https://www.mdpi.com/2227-7390/7/8/658
Plný text v Digitální knihovně
http://hdl.handle.net/11012/184670
BibTex
@article{BUT158228, author="Yevhen {Cherevko} and Vladimir {Berezovski} and Irena {Hinterleitner} and Dana {Smetanová}", title="Infinitesimal Transformations of Locally Conformal Kähler Manifolds", journal="Mathematics", year="2019", volume="8", number="7", pages="1--16", doi="10.3390/math7080658", issn="2227-7390", url="https://www.mdpi.com/2227-7390/7/8/658" }