Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BIOLEK, Z. BIOLEK, D. BIOLKOVÁ, V. KOLKA, Z.
Originální název
Taxicab geometry in table of higher-order elements
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper deals with the analysis of the order of the differential equation of motion describing the dynamics of a one-port network compounded of series or parallel connections of arbitrary elements from Chua’s table. It takes advantage of the fact that the elements in the table are arranged in a square graticule, which conforms to the so-called taxicab geometry. The order of the equation of motion is then expressed via the so-called Manhattan metric, which is applied to measuring the distance between individual elements in the table. It is demonstrated that the order can be taken as the radius of the so-called quarter-circle. The quarter-circle is a geometric figure in Chua’s table, circumscribed around an imaginary central point where the so-called hidden element of the one-port network is located.
Klíčová slova
Higher-order elements; Chua’s table; Memristor; Complexity; Dimension; Equation of motion; Taxicab geometry; Manhattan metric
Autoři
BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z.
Vydáno
30. 8. 2019
Nakladatel
Springer Nature
Místo
USA
ISSN
1573-269X
Periodikum
NONLINEAR DYNAMICS
Ročník
98
Číslo
1
Stát
Spojené státy americké
Strany od
623
Strany do
636
Strany počet
14
URL
https://doi.org/10.1007/s11071-019-05218-9
BibTex
@article{BUT158347, author="Zdeněk {Biolek} and Dalibor {Biolek} and Viera {Biolková} and Zdeněk {Kolka}", title="Taxicab geometry in table of higher-order elements", journal="NONLINEAR DYNAMICS", year="2019", volume="98", number="1", pages="623--636", doi="10.1007/s11071-019-05218-9", issn="1573-269X", url="https://doi.org/10.1007/s11071-019-05218-9" }