Detail publikace

Taxicab geometry in table of higher-order elements

BIOLEK, Z. BIOLEK, D. BIOLKOVÁ, V. KOLKA, Z.

Originální název

Taxicab geometry in table of higher-order elements

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper deals with the analysis of the order of the differential equation of motion describing the dynamics of a one-port network compounded of series or parallel connections of arbitrary elements from Chua’s table. It takes advantage of the fact that the elements in the table are arranged in a square graticule, which conforms to the so-called taxicab geometry. The order of the equation of motion is then expressed via the so-called Manhattan metric, which is applied to measuring the distance between individual elements in the table. It is demonstrated that the order can be taken as the radius of the so-called quarter-circle. The quarter-circle is a geometric figure in Chua’s table, circumscribed around an imaginary central point where the so-called hidden element of the one-port network is located.

Klíčová slova

Higher-order elements; Chua’s table; Memristor; Complexity; Dimension; Equation of motion; Taxicab geometry; Manhattan metric

Autoři

BIOLEK, Z.; BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z.

Vydáno

30. 8. 2019

Nakladatel

Springer Nature

Místo

USA

ISSN

1573-269X

Periodikum

NONLINEAR DYNAMICS

Ročník

98

Číslo

1

Stát

Spojené státy americké

Strany od

623

Strany do

636

Strany počet

14

URL

BibTex

@article{BUT158347,
  author="Zdeněk {Biolek} and Dalibor {Biolek} and Viera {Biolková} and Zdeněk {Kolka}",
  title="Taxicab geometry in table of higher-order elements",
  journal="NONLINEAR DYNAMICS",
  year="2019",
  volume="98",
  number="1",
  pages="623--636",
  doi="10.1007/s11071-019-05218-9",
  issn="1573-269X",
  url="https://doi.org/10.1007/s11071-019-05218-9"
}