Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
RAJMIC, P. ZÁVIŠKA, P. VESELÝ, V. MOKRÝ, O.
Originální název
A new generalized projection and its application to acceleration of audio declipping
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In convex optimization, it is often inevitable to work with projectors onto convex sets composed with a linear operator. Such a need arises from both the theory and applications, with signal processing being a prominent and broad field where convex optimization has been used recently. In this article, a novel projector is presented, which generalizes previous results in that it admits to work with a broader family of linear transforms when compared with the state of the art but, on the other hand, it is limited to box-type convex sets in the transformed domain. The new projector is described by an explicit formula, which makes it simple to implement and requires a low computational cost. The projector is interpreted within the framework of the so-called proximal splitting theory. The convenience of the new projector is demonstrated on an example from signal processing, where it was possible to speed up the convergence of a signal declipping algorithm by a factor of more than two.
Klíčová slova
projection; optimization; generalization; box constraints; declipping; desaturation; proximal splitting; sparsity
Autoři
RAJMIC, P.; ZÁVIŠKA, P.; VESELÝ, V.; MOKRÝ, O.
Vydáno
19. 9. 2019
Nakladatel
MDPI
Místo
Basel
ISSN
2075-1680
Periodikum
Axioms
Ročník
8
Číslo
3
Stát
Švýcarská konfederace
Strany od
1
Strany do
20
Strany počet
URL
https://www.mdpi.com/2075-1680/8/3/105
Plný text v Digitální knihovně
http://hdl.handle.net/11012/180691
BibTex
@article{BUT158565, author="Pavel {Rajmic} and Pavel {Záviška} and Vítězslav {Veselý} and Ondřej {Mokrý}", title="A new generalized projection and its application to acceleration of audio declipping", journal="Axioms", year="2019", volume="8", number="3", pages="1--20", doi="10.3390/axioms8030105", issn="2075-1680", url="https://www.mdpi.com/2075-1680/8/3/105" }