Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CRISTEA, I. KOCIJAN, J. NOVÁK, M.
Originální název
Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The aim of this paper is to study, from an algebraic point of view, the properties of interdependencies between sets of elements (i.e., pieces of secrets, atmospheric variables, etc.) that appear in various natural models, by using the algebraic hyperstructure theory. Starting from specific examples, we first define the relation of dependence and study its properties, and then, we construct various hyperoperations based on this relation. We prove that two of the associated hypergroupoids are Hv-groups, while the other two are, in some particular cases, only partial hypergroupoids. Besides, the extensivity and idempotence property are studied and related to the cyclicity. The second goal of our paper is to provide a new interpretation of the dependence relation by using elements of the theory of algebraic hyperstructures.
Klíčová slova
hyperoperation; hypergroupoid; dependence relation; influence; impact
Autoři
CRISTEA, I.; KOCIJAN, J.; NOVÁK, M.
Vydáno
23. 9. 2019
Nakladatel
MDPI
ISSN
2227-7390
Periodikum
Mathematics
Ročník
7
Číslo
10
Stát
Švýcarská konfederace
Strany od
1
Strany do
4
Strany počet
14
URL
https://www.mdpi.com/2227-7390/7/10/885
Plný text v Digitální knihovně
http://hdl.handle.net/11012/188981
BibTex
@article{BUT158840, author="Irina {Cristea} and Juš {Kocijan} and Michal {Novák}", title="Introduction to Dependence Relations and Their Links to Algebraic Hyperstructures", journal="Mathematics", year="2019", volume="7", number="10", pages="1--4", doi="10.3390/math7100885", issn="2227-7390", url="https://www.mdpi.com/2227-7390/7/10/885" }