Detail publikace

The periodic problem for the second order integro-differential equations with distributed deviation

MUKHIGULASHVILI, S. NOVOTNÁ, V.

Originální název

The periodic problem for the second order integro-differential equations with distributed deviation

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In the paper we describe the classes of unique solvability of the Dirichlet and mixed two point boundary value problems for the second order linear integro-differential equation ∫b u′′ (t) = p0 (t)u(t) + p1 (t)u(τ1 (t)) + p(t, s)u(τ (s)) ds + q(t). a On the basis of the obtained and, in some sense, optimal results for the linear problems, by the a priori boundedness principle we prove the theorems of solvability and unique solvability for the second order nonlinear functional differential equations under the mentioned boundary conditions.

Klíčová slova

Integro-differential equations; Dirichlet and mixed problems; unique solvability; a priori boundedness principle

Autoři

MUKHIGULASHVILI, S.; NOVOTNÁ, V.

Vydáno

5. 6. 2021

Nakladatel

Institute of Mathematics CAS

ISSN

0862-7959

Periodikum

Mathematica Bohemica

Ročník

146

Číslo

2

Stát

Česká republika

Strany od

167

Strany do

183

Strany počet

10

URL

Plný text v Digitální knihovně

BibTex

@article{BUT159528,
  author="Sulkhan {Mukhigulashvili} and Veronika {Novotná}",
  title="The periodic problem for the second order integro-differential equations with distributed deviation",
  journal="Mathematica Bohemica",
  year="2021",
  volume="146",
  number="2",
  pages="167--183",
  doi="10.21136/MB.2020.0061-19",
  issn="0862-7959",
  url="https://articles.math.cas.cz/10.21136/MB.2020.0061-19"
}