Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. DZHALLADOVA, I. RŮŽIČKOVÁ, M.
Originální název
A dynamical system with random parameters as a mathematical model of real phenomena
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In many cases, it is difficult to find a solution to a system of difference equations with random structure in a closed form. Thus, a random process, which is the solution to such a system, can be described in another way, for example, by its moments. In this paper, we consider systems of linear difference equations whose coefficients depend on a random Markov or semi-Markov chain with jumps. The moment equations are derived for such a system when the random structure is determined by a Markov chain with jumps. As an example, three processes: Threats to security in cyberspace, radiocarbon dating, and stability of the foreign currency exchange market are modelled by systems of difference equations with random parameters that depend on a semi-Markov or Markov process. The moment equations are used to obtain the conditions under which the processes are stable.
Klíčová slova
Markov and semi-Markov chain; random transformation of solutions; L2-stability; jumps of solutions; moment equations
Autoři
DIBLÍK, J.; DZHALLADOVA, I.; RŮŽIČKOVÁ, M.
Vydáno
30. 10. 2019
Nakladatel
MDPI
Místo
MDPI AG, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
ISSN
2073-8994
Periodikum
Symmetry
Ročník
11
Číslo
Stát
Švýcarská konfederace
Strany od
1
Strany do
14
Strany počet
URL
https://www.mdpi.com/2073-8994/11/11/1338
Plný text v Digitální knihovně
http://hdl.handle.net/11012/184671
BibTex
@article{BUT159586, author="Josef {Diblík} and Irada {Dzhalladova} and Miroslava {Růžičková}", title="A dynamical system with random parameters as a mathematical model of real phenomena", journal="Symmetry", year="2019", volume="11", number="11", pages="1--14", doi="10.3390/sym11111338", issn="2073-8994", url="https://www.mdpi.com/2073-8994/11/11/1338" }