Detail publikace

Probabilistic Noise2Void: Unsupervised Content-Aware Denoising

KRULL, A. VIČAR, T. PRAKASH, M. LALIT, M. JUG, F.

Originální název

Probabilistic Noise2Void: Unsupervised Content-Aware Denoising

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Today, Convolutional Neural Networks (CNNs) are the leading method for image denoising. They are traditionally trained on pairs of images, which are often hard to obtain for practical applications. This motivates self-supervised training methods, such as Noise2Void (N2V) that operate on single noisy images. Self-supervised methods are, unfortunately, not competitive with models trained on image pairs. Here, we present Probabilistic Noise2Void (PN2V), a method to train CNNs to predict per-pixel intensity distributions. Combining these with a suitable description of the noise, we obtain a complete probabilistic model for the noisy observations and true signal in every pixel. We evaluate PN2V on publicly available microscopy datasets, under a broad range of noise regimes, and achieve competitive results with respect to supervised state-of-the-art methods.

Klíčová slova

denoising, CARE, deep learning, microscopy data, probabilistic

Autoři

KRULL, A.; VIČAR, T.; PRAKASH, M.; LALIT, M.; JUG, F.

Vydáno

19. 2. 2020

Nakladatel

Frontiers Media SA

ISSN

2624-9898

Periodikum

Frontiers in Computer Science

Ročník

2

Číslo

5

Stát

Švýcarská konfederace

Strany od

1

Strany do

9

Strany počet

9

URL

Plný text v Digitální knihovně

BibTex

@article{BUT159778,
  author="Alexander {Krull} and Tomáš {Vičar} and Mangal {Prakash} and Manan {Lalit} and Florian {Jug}",
  title="Probabilistic Noise2Void: Unsupervised Content-Aware Denoising",
  journal="Frontiers in Computer Science",
  year="2020",
  volume="2",
  number="5",
  pages="1--9",
  doi="10.3389/fcomp.2020.00005",
  issn="2624-9898",
  url="https://www.frontiersin.org/articles/10.3389/fcomp.2020.00005/full"
}