Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KRULL, A. VIČAR, T. PRAKASH, M. LALIT, M. JUG, F.
Originální název
Probabilistic Noise2Void: Unsupervised Content-Aware Denoising
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Today, Convolutional Neural Networks (CNNs) are the leading method for image denoising. They are traditionally trained on pairs of images, which are often hard to obtain for practical applications. This motivates self-supervised training methods, such as Noise2Void (N2V) that operate on single noisy images. Self-supervised methods are, unfortunately, not competitive with models trained on image pairs. Here, we present Probabilistic Noise2Void (PN2V), a method to train CNNs to predict per-pixel intensity distributions. Combining these with a suitable description of the noise, we obtain a complete probabilistic model for the noisy observations and true signal in every pixel. We evaluate PN2V on publicly available microscopy datasets, under a broad range of noise regimes, and achieve competitive results with respect to supervised state-of-the-art methods.
Klíčová slova
denoising, CARE, deep learning, microscopy data, probabilistic
Autoři
KRULL, A.; VIČAR, T.; PRAKASH, M.; LALIT, M.; JUG, F.
Vydáno
19. 2. 2020
Nakladatel
Frontiers Media SA
ISSN
2624-9898
Periodikum
Frontiers in Computer Science
Ročník
2
Číslo
5
Stát
Švýcarská konfederace
Strany od
1
Strany do
9
Strany počet
URL
https://www.frontiersin.org/articles/10.3389/fcomp.2020.00005/full
Plný text v Digitální knihovně
http://hdl.handle.net/11012/193231
BibTex
@article{BUT159778, author="Alexander {Krull} and Tomáš {Vičar} and Mangal {Prakash} and Manan {Lalit} and Florian {Jug}", title="Probabilistic Noise2Void: Unsupervised Content-Aware Denoising", journal="Frontiers in Computer Science", year="2020", volume="2", number="5", pages="1--9", doi="10.3389/fcomp.2020.00005", issn="2624-9898", url="https://www.frontiersin.org/articles/10.3389/fcomp.2020.00005/full" }