Detail publikace

Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders

REBENDA, J.

Originální název

Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The differential transformation, an approach based on Taylor’s theorem, is proposed as convenient for finding an exact or approximate solution to the initial value problem with multiple Caputo fractional derivatives of generally non-commensurate orders. The multi-term differential equation is first transformed into a multi-order system and then into a system of recurrence relations for coefficients of formal fractional power series. The order of the fractional power series is discussed in relation to orders of derivatives appearing in the original equation. Application of the algorithm to an initial value problem gives a reliable and expected outcome including the phenomenon of symmetry in choice of orders of the differential transformation of the multi-order system.

Klíčová slova

fractional differential equation; non-commensurate orders; initial value problem; differential transform; fractional power series

Autoři

REBENDA, J.

Vydáno

9. 11. 2019

Nakladatel

MDPI

Místo

Basel, Switzerland

ISSN

2073-8994

Periodikum

Symmetry

Ročník

11

Číslo

11

Stát

Švýcarská konfederace

Strany od

1

Strany do

10

Strany počet

10

URL

Plný text v Digitální knihovně

BibTex

@article{BUT159907,
  author="Josef {Rebenda}",
  title="Application of Differential Transform to Multi-Term Fractional Differential Equations with Non-Commensurate Orders",
  journal="Symmetry",
  year="2019",
  volume="11",
  number="11",
  pages="1--10",
  doi="10.3390/sym11111390",
  issn="2073-8994",
  url="https://www.mdpi.com/2073-8994/11/11/1390"
}

Dokumenty