Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÝ, O. PLCHOT, O. GLEMBEK, O. BURGET, L.
Originální název
Factorization of Discriminatively Trained i-Vector Extractor for Speaker Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this work, we continue in our research on i-vector extractor for speaker verification (SV) and we optimize its architecture for fast and effective discriminative training. We were motivated by computational and memory requirements caused by the large number of parameters of the original generative ivector model. Our aim is to preserve the power of the original generative model, and at the same time focus the model towards extraction of speaker-related information. We show that it is possible to represent a standard generative i-vector extractor by a model with significantly less parameters and obtain similar performance on SV tasks. We can further refine this compact model by discriminative training and obtain i-vectors that lead to better performance on various SV benchmarks representing different acoustic domains.
Klíčová slova
SRE
Autoři
NOVOTNÝ, O.; PLCHOT, O.; GLEMBEK, O.; BURGET, L.
Vydáno
15. 9. 2019
Nakladatel
International Speech Communication Association
Místo
Graz
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2019
Číslo
9
Stát
Francouzská republika
Strany od
4330
Strany do
4334
Strany počet
5
URL
https://www.isca-speech.org/archive/Interspeech_2019/pdfs/1757.pdf
BibTex
@inproceedings{BUT159998, author="Ondřej {Novotný} and Oldřich {Plchot} and Ondřej {Glembek} and Lukáš {Burget}", title="Factorization of Discriminatively Trained i-Vector Extractor for Speaker Recognition", booktitle="Proceedings of Interspeech", year="2019", journal="Proceedings of Interspeech", volume="2019", number="9", pages="4330--4334", publisher="International Speech Communication Association", address="Graz", doi="10.21437/Interspeech.2019-1757", issn="1990-9772", url="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/1757.pdf" }