Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BASKAR, M. BURGET, L. WATANABE, S. KARAFIÁT, M. HORI, T. ČERNOCKÝ, J.
Originální název
Promising Accurate Prefix Boosting For Sequence-to-sequence ASR
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we present promising accurate prefix boosting (PAPB), a discriminative training technique for attention based sequence-tosequence (seq2seq) ASR. PAPB is devised to unify the training and testing scheme effectively. The training procedure involves maximizing the score of each partial correct sequence obtained during beam search compared to other hypotheses. The training objective also includes minimization of token (character) error rate. PAPB shows its efficacy by achieving 10.8% and 3.8% WER with and without external RNNLM respectively on Wall Street Journal dataset.
Klíčová slova
Beam search training, sequence learning, discriminative training, Attention models, softmax-margin
Autoři
BASKAR, M.; BURGET, L.; WATANABE, S.; KARAFIÁT, M.; HORI, T.; ČERNOCKÝ, J.
Vydáno
12. 5. 2019
Nakladatel
IEEE Signal Processing Society
Místo
Brighton
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP
Strany od
5646
Strany do
5650
Strany počet
5
URL
https://ieeexplore.ieee.org/document/8682782
BibTex
@inproceedings{BUT160001, author="BASKAR, M. and BURGET, L. and WATANABE, S. and KARAFIÁT, M. and HORI, T. and ČERNOCKÝ, J.", title="Promising Accurate Prefix Boosting For Sequence-to-sequence ASR", booktitle="Proceedings of ICASSP", year="2019", pages="5646--5650", publisher="IEEE Signal Processing Society", address="Brighton", doi="10.1109/ICASSP.2019.8682782", isbn="978-1-5386-4658-8", url="https://ieeexplore.ieee.org/document/8682782" }