Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ONDEL YANG, L. LI, R. SELL, G. HEŘMANSKÝ, H.
Originální název
Deriving Spectro-temporal Properties of Hearing from Speech Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Human hearing and human speech are intrinsically tied together, as the properties of speech almost certainly developed in order to be heard by human ears. As a result of this connection, it has been shown that certain properties of human hearing are mimicked within data-driven systems that are trained to understand human speech. In this paper, we further explore this phenomenon by measuring the spectro-temporal responses of data-derived filters in a front-end convolutional layer of a deep network trained to classify the phonemes of clean speech. The analyses show that the filters do indeed exhibit spectro-temporal responses similar to those measured in mammals, and also that the filters exhibit an additional level of frequency selectivity, similar to the processing pipeline assumed within the Articulation Index.
Klíčová slova
perception, spectro-temporal, auditory, deep learning
Autoři
ONDEL YANG, L.; LI, R.; SELL, G.; HEŘMANSKÝ, H.
Vydáno
12. 5. 2019
Nakladatel
IEEE Signal Processing Society
Místo
Brighton
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP
Strany od
411
Strany do
415
Strany počet
5
URL
https://ieeexplore.ieee.org/document/8682787
BibTex
@inproceedings{BUT160004, author="ONDEL YANG, L. and LI, R. and SELL, G. and HEŘMANSKÝ, H.", title="Deriving Spectro-temporal Properties of Hearing from Speech Data", booktitle="Proceedings of ICASSP", year="2019", pages="411--415", publisher="IEEE Signal Processing Society", address="Brighton", doi="10.1109/ICASSP.2019.8682787", isbn="978-1-5386-4658-8", url="https://ieeexplore.ieee.org/document/8682787" }