Detail publikace

Optimal stabilization for differential systems with delays - Malkin’s approach

DEMCHENKO, H. DIBLÍK, J. KHUSAINOV, D.

Originální název

Optimal stabilization for differential systems with delays - Malkin’s approach

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper considers a process controlled by a system of delayed differential equations. Under certain assumptions, a control function is determined such that the zero solution of the system is asymptotically stable and, for an arbitrary solution, the integral quality criterion with infinite upper limit exists and attains its minimum value in a given sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended to delayed functional differential equations, and Lyapunov’s second method is applied. The results are illustrated by examples, and applied to some classes of delayed linear differential equations.

Klíčová slova

Differential equation; delay; control; quality criterion; asymptotic stability

Autoři

DEMCHENKO, H.; DIBLÍK, J.; KHUSAINOV, D.

Vydáno

19. 4. 2019

Nakladatel

Elsevier

Místo

PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

ISSN

0016-0032

Periodikum

JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS

Ročník

356

Číslo

8

Stát

Spojené státy americké

Strany od

4811

Strany do

4841

Strany počet

31

URL

BibTex

@article{BUT160033,
  author="Hanna {Demchenko} and Josef {Diblík} and Denys {Khusainov}",
  title="Optimal stabilization for differential systems with delays - Malkin’s approach",
  journal="JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS",
  year="2019",
  volume="356",
  number="8",
  pages="4811--4841",
  doi="10.1016/j.jfranklin.2019.04.021",
  issn="0016-0032",
  url="https://www.sciencedirect.com/science/article/abs/pii/S0016003219302698?via%3Dihub"
}