Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DEMCHENKO, H. DIBLÍK, J. KHUSAINOV, D.
Originální název
Optimal stabilization for differential systems with delays - Malkin’s approach
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper considers a process controlled by a system of delayed differential equations. Under certain assumptions, a control function is determined such that the zero solution of the system is asymptotically stable and, for an arbitrary solution, the integral quality criterion with infinite upper limit exists and attains its minimum value in a given sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended to delayed functional differential equations, and Lyapunov’s second method is applied. The results are illustrated by examples, and applied to some classes of delayed linear differential equations.
Klíčová slova
Differential equation; delay; control; quality criterion; asymptotic stability
Autoři
DEMCHENKO, H.; DIBLÍK, J.; KHUSAINOV, D.
Vydáno
19. 4. 2019
Nakladatel
Elsevier
Místo
PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
ISSN
0016-0032
Periodikum
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
Ročník
356
Číslo
8
Stát
Spojené státy americké
Strany od
4811
Strany do
4841
Strany počet
31
URL
https://www.sciencedirect.com/science/article/abs/pii/S0016003219302698?via%3Dihub
BibTex
@article{BUT160033, author="Hanna {Demchenko} and Josef {Diblík} and Denys {Khusainov}", title="Optimal stabilization for differential systems with delays - Malkin’s approach", journal="JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS", year="2019", volume="356", number="8", pages="4811--4841", doi="10.1016/j.jfranklin.2019.04.021", issn="0016-0032", url="https://www.sciencedirect.com/science/article/abs/pii/S0016003219302698?via%3Dihub" }