Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOTOUL, M. SKALKA, P. PROFANT, T. ŘEHÁK, P. ŠESTÁK, P. ČERNÝ, M. POKLUDA, J.
Originální název
A novel multiscale approach to brittle fracture of nano/micro-sized components
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Principles and advantages of a new concept based on the ab initio aided strain gradient elasticity theory are shown in comparison with the classical Barenblatt cohesive model. The method is applied to the theoretical prediction of the critical energy release rate and the crack tip opening displacement at the crack instability in nanopanels made of germanium and molybdenum crystals. The necessary length scale parameter l1 is determined for germanium and molybdenum by the best gradient elasticity fits of ab initio computed screw dislocation displacements and phonon dispersions. Values of ab initio computed critical energy release rates and crack opening profiles revealed that the length l1 is related to inflexion points of profiles. A novel ab initio method in combination with continuum mechanics was successfully tested to replace molecular statics dependent of availability of interatomic potentials. The asymptotic strain gradient elasticity solution for displacement components near the crack tip in materials with cubic lattice was also derived.
Klíčová slova
DFT; FEM; fracture nanomechanics; size-dependent phenomena; strain gradient elasticity
Autoři
KOTOUL, M.; SKALKA, P.; PROFANT, T.; ŘEHÁK, P.; ŠESTÁK, P.; ČERNÝ, M.; POKLUDA, J.
Vydáno
29. 8. 2020
ISSN
8756-758X
Periodikum
Fatigue & Fracture of Engineering Materials & Structures
Ročník
43
Číslo
8
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1630
Strany do
1645
Strany počet
16
URL
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.13179
BibTex
@article{BUT160769, author="Michal {Kotoul} and Petr {Skalka} and Tomáš {Profant} and Petr {Řehák} and Petr {Šesták} and Miroslav {Černý} and Jaroslav {Pokluda}", title="A novel multiscale approach to brittle fracture of nano/micro-sized components", journal="Fatigue & Fracture of Engineering Materials & Structures", year="2020", volume="43", number="8", pages="1630--1645", doi="10.1111/ffe.13179", issn="8756-758X", url="https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.13179" }