Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÝ, O. MATĚJKA, P. PLCHOT, O. GLEMBEK, O.
Originální název
On the use of DNN Autoencoder for Robust Speaker Recognition
Typ
zpráva odborná
Jazyk
angličtina
Originální abstrakt
In this paper, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. The target application is a robust speaker recognition system. We started with augmenting the Fisher database with artificially noised and reverberated data and we trained the autoencoder to map noisy and reverberated speech to its clean version. We use the autoencoder as a preprocessing step for a stateof- the-art text-independent speaker recognition system. We compare results achieved with pure autoencoder enhancement, multi-condition PLDA training and their simultaneous use. We present a detailed analysis with various conditions of NIST SRE 2010, PRISM and artificially corrupted NIST SRE 2010 telephone condition. We conclude that the proposed preprocessing significantly outperforms the baseline and that this technique can be used to build a robust speaker recognition system for reverberated and noisy data.
Klíčová slova
speaker recognition, signal enhancement, autoencoder
Autoři
NOVOTNÝ, O.; MATĚJKA, P.; PLCHOT, O.; GLEMBEK, O.
Vydáno
8. 11. 2018
Nakladatel
Faculty of Information Technology BUT
Místo
Brno
Strany od
1
Strany do
5
Strany počet
URL
https://www.fit.vut.cz/research/publication/11855/
BibTex
@techreport{BUT161935, author="Ondřej {Novotný} and Pavel {Matějka} and Oldřich {Plchot} and Ondřej {Glembek}", title="On the use of DNN Autoencoder for Robust Speaker Recognition", year="2018", publisher="Faculty of Information Technology BUT", address="Brno", pages="1--5", url="https://www.fit.vut.cz/research/publication/11855/" }
Dokumenty
novotny_2018_tech-rep-dnn-autoencoder.pdf